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1 Abstract

Prime numbers in arithmetic progressions had been the subject of interest for many years.
Here I derive a lower bound on the common difference of such an arithmetic progression.
Then I give a lower bound on the product of primes i.e the primorials.

2 Notations

Suppose 2 = p1, 3 = p2, p3, . . . is the sequence of prime numbers. The primorial function
is defined as n# =

∏
p≤n p. The Chebyshev function is defined as θ(n) = log(n#). The

prime counting function is π(x) = number of primes ≤ x. All over here log n is the
natural logarithm of n. And log2 n is meant to be= (log n)2, not log log n.

3 The Results

Using elementary methods, Bonse proved[1] that
p1p2 . . . pn > p2n+1∀n ≥ 4 and p1p2 . . . pn > p3n+1∀n ≥ 5.
Without restriction of elementary methods, L. Pósa proved[2] that, given any k > 1,

there exists an nk such that,

p1p2 . . . pn > pkn+1∀n ≥ nk.

In 2000, L.Panaitopol[3] gave another excellent bound,

p1p2 . . . pn > p
n−π(n)
n+1 ∀n ≥ 2.

I was actually working with the common difference of arithmetic progressions of
primes. Suppose p, p + d, p + 2d, . . . , p + (n − 1)d are n primes in A.P.(n ≥ 4). Using
Panaitopol’s inequality I arrived at the following lower bound on d : If pm ≤ n−1 < pm+1,
then d > nm−π(m).

Then, modifying Panaipotol’s proof , I arrived at this stronger bound on primorials :
Given any k > 1, there exists an nk such that,∀n ≥ nk ,

p1p2 . . . pn > p
n−π(n)+k
n+1 .
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4 The Proofs

First let us prove the bound on the common difference d of an arithmetic progression of
primes. Let An = {p, p + d, p + 2d, . . . , p + (n − 1)d} be an arithmetic progression of n
primes.

We claim that (n− 1)#|d.
If this is not the case, then there exists prime q < n which does not divide d. Consider

Aq = {p, p+ d, p+ 2d, . . . , p+ (q− 1)d}. Now, if ∃i, j (0≤ i < j ≤ q− 1) : p+ id ≡ p+ jd
(mod q), then we get q|(j − i)d⇒ q|j − i (since q 6 |d). But this is impossible in light of
0 < j − i < q − 1. So the elements of Aq are congruent to distinct residues modulo q.
Since Aq has q elements, so there exists some p + kd ∈ Aq which is divisible by q. But,
p + kd ≥ p ≥ n > q, [ Note that n ≤ p, otherwise (p + pd) ∈ An but its not a prime.]
hence p+ kd is composite, a contradiction.

Now, say pm ≤ n− 1 < pm+1. And n ≥ 4⇒ m ≥ 2. So using the aforesaid inequality
of Panaitopol, we have

d ≥ (n− 1)# = pm# > p
m−π(m)
m+1 ≥ nm−π(m)(Proved).

Next we prove the lower bound on primorial function. First we prove the following
lemma,

Lemma: For all n ≥ 59, we have,

log pn+1 < log n+ log log n+
log log n− 0.4

log n

Proof: We use a result due to Rosser and Schoenfeld[4],

pn ≤ n(log n+ log log n− 1/2) (∀n ≥ 20) . . . (1)

From log(1 + x) < x for x > 0, we get for x = 1/n that,
log(n+ 1) < log n+ 1

n
. We also get that,

log log(n+ 1) < log(log n+
1

n
) = log log n+ log(1 +

1

n log n
) < log log n+

1

n log n
.

Hence, along with (1), we obtain,
log pn+1 < log(n+ 1) + log(log(n+ 1) + log log(n+ 1)− 1/2)

< log n+
1

n
+ log log n+ log(1 +

1

n log n
+

log log n

log n
+

1

n log2 n
− 1

2 log n
)

< log n+
1

n
+ log log n+

log log n

log n
+

1

n log n
+

1

n log2 n
− 1

2 log n

So it remains to show that,

1

n
+

log log n

log n
+

1

n log n
+

1

n log2 n
− 1

2 log n
<

log log n− 0.4

log n

or,
log n

n
+ log log n+

1

n
+

1

n log n
− 1

2
< log log n− 0.4

or,
log n+ 1

n
+

1

n log n
< 0.1
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The LHS is a decreasing function of n, and at n = 59(> e4), it is < 0.1. So the above
inequality holds ∀n ≥ 59.

Next we use another estimate due to Rosser and Schoenfeld[4],

π(x) >
x

log x
+

x

2 log2 x
(∀x ≥ 59) . . . (2)

and an estimate of θ(pn) due to G.Robin[5],

θ(pn) > n(log n+ log log n− 1 +
log log n− 2.1454

log n
)(∀n ≥ 3) . . . (3)

For n ≥ 59, we use (2) and the aforesaid lemma to obtain,

n(1− 1

log n
− 1

2 log2 n
+
k

n
)(log n+ log log n+

log log n− 0.4

log n
)

> (n− π(n) + k) log pn+1 . . . (4)

Now, we wish to show that, given any k , θ(pn) > (n− π(n) + k) log pn+1 holds ∀n ≥
some nk. So, in view of (3) and (4) , it suffices to show that,

(1− 1

log n
− 1

2 log2 n
+
k

n
)(log n+ log log n+

log log n− 0.4

log n
)

< (log n+ log log n− 1 +
log log n− 2.1454

log n
)

or,
k

n
(log n+ log log n+

log log n− 0.4

log n
)− log log n

log n
− log log n

2 log2 n

− 1

2 log n
+

log log n− 0.4

log n
(− 1

log n
− 1

2 log2 n
)− 0.4

log n
< −2.1454

log n

or,
1.2454

log n
+
k

n
log log n+

k

n
(
log log n− 0.4

log n
) +

k

n
log n <

log log n

log n

+
0.5

(log n)2
log log n+

1

log n
(
log log n− 0.4

log n
) +

log log n− 0.4

2(log n)3

The last inequality holds for all n after some cut-off nk. In fact, each of the following
inequalities,

1.2454

log n
<

log log n

log n
,

k

n
log log n <

0.5

(log n)2
log log n ,

k

n
(
log log n− 0.4

log n
) <

1

log n
(
log log n− 0.4

log n
) ,

k

n
log n <

log log n− 0.4

2(log n)3
,

holds after a certain [depending on k] cut-off nk for n. Thus our required inequality
also holds for all large enough n. Hence our proof is complete.
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