A Lower Bound on Primorials and the Common Difference of Arithmetic Progression of Primes

Aditya Ghosh , India

April 10, 2017

1 Abstract

Prime numbers in arithmetic progressions had been the subject of interest for many years. Here I derive a lower bound on the common difference of such an arithmetic progression. Then I give a lower bound on the product of primes i.e the primorials.

2 Notations

Suppose $2=p_{1}, 3=p_{2}, p_{3}, \ldots$ is the sequence of prime numbers. The primorial function is defined as $n \#=\prod_{p \leq n} p$. The Chebyshev function is defined as $\theta(n)=\log (n \#)$. The prime counting function is $\pi(x)=$ number of primes $\leq x$. All over here $\log n$ is the natural logarithm of n. And $\log ^{2} n$ is meant to be $=(\log n)^{2}$, not $\log \log n$.

3 The Results

Using elementary methods, Bonse proved ${ }^{[1]}$ that
$p_{1} p_{2} \ldots p_{n}>p_{n+1}^{2} \forall n \geq 4$ and $p_{1} p_{2} \ldots p_{n}>p_{n+1}^{3} \forall n \geq 5$.
Without restriction of elementary methods, L. Pósa proved ${ }^{[2]}$ that, given any $k>1$, there exists an n_{k} such that,

$$
p_{1} p_{2} \ldots p_{n}>p_{n+1}^{k} \forall n \geq n_{k} .
$$

In 2000, L.Panaitopol ${ }^{[3]}$ gave another excellent bound,

$$
p_{1} p_{2} \ldots p_{n}>p_{n+1}^{n-\pi(n)} \forall n \geq 2
$$

I was actually working with the common difference of arithmetic progressions of primes. Suppose $p, p+d, p+2 d, \ldots, p+(n-1) d$ are n primes in A.P. $(n \geq 4)$. Using Panaitopol's inequality I arrived at the following lower bound on d : If $p_{m} \leq n-1<p_{m+1}$, then $d>n^{m-\pi(m)}$.

Then, modifying Panaipotol's proof, I arrived at this stronger bound on primorials :
Given any $k>1$, there exists an n_{k} such that, $\forall n \geq n_{k}$,

$$
p_{1} p_{2} \ldots p_{n}>p_{n+1}^{n-\pi(n)+k}
$$

4 The Proofs

First let us prove the bound on the common difference d of an arithmetic progression of primes. Let $A_{n}=\{p, p+d, p+2 d, \ldots, p+(n-1) d\}$ be an arithmetic progression of n primes.

We claim that $(n-1) \# \mid d$.
If this is not the case, then there exists prime $q<n$ which does not divide d. Consider $A_{q}=\{p, p+d, p+2 d, \ldots, p+(q-1) d\}$. Now, if $\exists i, j(0 \leq i<j \leq q-1): p+i d \equiv p+j d$ $(\bmod q)$, then we get $q|(j-i) d \Rightarrow q| j-i($ since $q \nmid d)$. But this is impossible in light of $0<j-i<q-1$. So the elements of A_{q} are congruent to distinct residues modulo q. Since A_{q} has q elements, so there exists some $p+k d \in A_{q}$ which is divisible by q. But, $p+k d \geq p \geq n>q$, [Note that $n \leq p$, otherwise $(p+p d) \in A_{n}$ but its not a prime.] hence $p+k d$ is composite, a contradiction.

Now, say $p_{m} \leq n-1<p_{m+1}$. And $n \geq 4 \Rightarrow m \geq 2$. So using the aforesaid inequality of Panaitopol, we have
$d \geq(n-1) \#=p_{m} \#>p_{m+1}^{m-\pi(m)} \geq n^{m-\pi(m)}$ (Proved).
Next we prove the lower bound on primorial function. First we prove the following lemma,

Lemma: For all $n \geq 59$, we have,

$$
\log p_{n+1}<\log n+\log \log n+\frac{\log \log n-0.4}{\log n}
$$

Proof: We use a result due to Rosser and Schoenfeld ${ }^{[4]}$,

$$
p_{n} \leq n(\log n+\log \log n-1 / 2) \quad(\forall n \geq 20) \ldots(1)
$$

From $\log (1+x)<x$ for $x>0$, we get for $x=1 / n$ that, $\log (n+1)<\log n+\frac{1}{n}$. We also get that,

$$
\log \log (n+1)<\log \left(\log n+\frac{1}{n}\right)=\log \log n+\log \left(1+\frac{1}{n \log n}\right)<\log \log n+\frac{1}{n \log n}
$$

Hence, along with (1), we obtain,
$\log p_{n+1}<\log (n+1)+\log (\log (n+1)+\log \log (n+1)-1 / 2)$

$$
\begin{aligned}
& <\log n+\frac{1}{n}+\log \log n+\log \left(1+\frac{1}{n \log n}+\frac{\log \log n}{\log n}+\frac{1}{n \log ^{2} n}-\frac{1}{2 \log n}\right) \\
& <\log n+\frac{1}{n}+\log \log n+\frac{\log \log n}{\log n}+\frac{1}{n \log n}+\frac{1}{n \log ^{2} n}-\frac{1}{2 \log n}
\end{aligned}
$$

So it remains to show that,

$$
\frac{1}{n}+\frac{\log \log n}{\log n}+\frac{1}{n \log n}+\frac{1}{n \log ^{2} n}-\frac{1}{2 \log n}<\frac{\log \log n-0.4}{\log n}
$$

or,

$$
\frac{\log n}{n}+\log \log n+\frac{1}{n}+\frac{1}{n \log n}-\frac{1}{2}<\log \log n-0.4
$$

or,

$$
\frac{\log n+1}{n}+\frac{1}{n \log n}<0.1
$$

The LHS is a decreasing function of n, and at $n=59\left(>e^{4}\right)$, it is <0.1. So the above inequality holds $\forall n \geq 59$.

Next we use another estimate due to Rosser and Schoenfeld ${ }^{[4]}$,

$$
\pi(x)>\frac{x}{\log x}+\frac{x}{2 \log ^{2} x} \quad(\forall x \geq 59) \ldots(2)
$$

and an estimate of $\theta\left(p_{n}\right)$ due to G.Robin ${ }^{[5]}$,

$$
\begin{equation*}
\theta\left(p_{n}\right)>n\left(\log n+\log \log n-1+\frac{\log \log n-2.1454}{\log n}\right)(\forall n \geq 3) \ldots \tag{3}
\end{equation*}
$$

For $n \geq 59$, we use (2) and the aforesaid lemma to obtain,

$$
\begin{gather*}
n\left(1-\frac{1}{\log n}-\frac{1}{2 \log ^{2} n}+\frac{k}{n}\right)\left(\log n+\log \log n+\frac{\log \log n-0.4}{\log n}\right) \\
>(n-\pi(n)+k) \log p_{n+1} \tag{4}
\end{gather*}
$$

Now, we wish to show that, given any $\mathrm{k}, \theta\left(p_{n}\right)>(n-\pi(n)+k) \log p_{n+1}$ holds $\forall n \geq$ some n_{k}. So, in view of (3) and (4), it suffices to show that,

$$
\begin{gathered}
\left(1-\frac{1}{\log n}-\frac{1}{2 \log ^{2} n}+\frac{k}{n}\right)\left(\log n+\log \log n+\frac{\log \log n-0.4}{\log n}\right) \\
<\left(\log n+\log \log n-1+\frac{\log \log n-2.1454}{\log n}\right)
\end{gathered}
$$

or,

$$
\begin{aligned}
& \frac{k}{n}\left(\log n+\log \log n+\frac{\log \log n-0.4}{\log n}\right)-\frac{\log \log n}{\log n}-\frac{\log \log n}{2 \log ^{2} n} \\
- & \frac{1}{2 \log n}+\frac{\log \log n-0.4}{\log n}\left(-\frac{1}{\log n}-\frac{1}{2 \log ^{2} n}\right)-\frac{0.4}{\log n}<-\frac{2.1454}{\log n}
\end{aligned}
$$

or,

$$
\begin{aligned}
& \frac{1.2454}{\log n}+\frac{k}{n} \log \log n+\frac{k}{n}\left(\frac{\log \log n-0.4}{\log n}\right)+\frac{k}{n} \log n<\frac{\log \log n}{\log n} \\
& +\frac{0.5}{(\log n)^{2}} \log \log n+\frac{1}{\log n}\left(\frac{\log \log n-0.4}{\log n}\right)+\frac{\log \log n-0.4}{2(\log n)^{3}}
\end{aligned}
$$

The last inequality holds for all n after some cut-off n_{k}. In fact, each of the following inequalities,

$$
\begin{gathered}
\frac{1.2454}{\log n}<\frac{\log \log n}{\log n} \quad, \quad \frac{k}{n} \log \log n<\frac{0.5}{(\log n)^{2}} \log \log n, \\
\frac{k}{n}\left(\frac{\log \log n-0.4}{\log n}\right)<\frac{1}{\log n}\left(\frac{\log \log n-0.4}{\log n}\right) \quad, \quad \frac{k}{n} \log n<\frac{\log \log n-0.4}{2(\log n)^{3}},
\end{gathered}
$$

holds after a certain [depending on k] cut-off n_{k} for n. Thus our required inequality also holds for all large enough n. Hence our proof is complete.

5 References

The references [1],[2],[4],[5] given below, are taken from [3].
[1] H.Rademacher, O.Toeplitz : The enjoyment of mathematics. Princeton Univ. Press, 1957.
[2] L.PósA : Über eine Eigenschaft der Primzahlen (Hungarian). Mat. Lapok 11(1960), 124-129.
[3] L.Panaitopol: An Inequality Involving Prime Numbers. Univ. Beograd. Publ. Elektrotehn.Fak. Ser.Mat.11(2000), 33-35.
[4] J.B.Rosser, L.SCHOENFELD : Approximate formulas for some functions of prime numbers. Illinois J.Math. 6(1962), 64-89.
[5] G.Robin : Estimation de la fonction de Tschebyshev θ sur le k-ième nombre premier et grandes valeurs de la fonction $\omega(n)$, nombre des diviseurs premier de n.Acta. Arith. 43(1983), 367-389.

6 About the Author

The author is a student of 12 th standard in RKM Boys' Home High School, Rahara, Kol-113. He is a resident of Kolkata, West Bengal, India.

