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1 Abstract

Prime numbers in arithmetic progressions had been the subject of interest for many years.
Here I derive a lower bound on the common difference of such an arithmetic progression.
Then I give a lower bound on the product of primes i.e the primorials.

2 Notations

Suppose 2 = p1,3 = pa, P3, . .. is the sequence of prime numbers. The primorial function
is defined as n# = [[,<,p. The Chebyshev function is defined as 6(n) = log(n#). The
prime counting function is m(xz) = number of primes < x. All over here logn is the
natural logarithm of n. And log®n is meant to be= (logn)?, not loglog n.

3 The Results

Using elementary methods, Bonse proved! that

PiP2- .. Pn > P2V >4 and pips...p, > P, VR > 5.

Without restriction of elementary methods, L. Pdsa proved® that, given any k > 1,
there exists an n; such that,

PiP2---Dn > P VR >y
In 2000, L.Panaitopol[g} gave another excellent bound,
Pip2 ... Pn > pZ:f(n)Vn > 2.

I was actually working with the common difference of arithmetic progressions of
primes. Suppose p,p +d,p+ 2d,...,p+ (n — 1)d are n primes in A.P.(n > 4). Using
Panaitopol’s inequality I arrived at the following lower bound on d : If p,,, < n—1 < ppa1,
then d > n™~"(m),

Then, modifying Panaipotol’s proof , I arrived at this stronger bound on primorials :

Given any k > 1, there exists an n, such that,vn > ny ,

—7(n)+k
Pip2 - .- Pn > p2+1(n) .



4 The Proofs

First let us prove the bound on the common difference d of an arithmetic progression of
primes. Let A, = {p,p+d,p+2d,...,p+ (n — 1)d} be an arithmetic progression of n
primes.

We claim that (n — 1)#|d.

If this is not the case, then there exists prime ¢ < n which does not divide d. Consider
Ay=1{p,p+d,p+2d,....,p+(q—1)d}. Now, if 3i,j (0<i<j<q—1):p+id=p+jd
(mod gq), then we get ¢|(j — i)d = q|j — ¢ (since ¢ fd). But this is impossible in light of
0 <j—1i<q—1. So the elements of A, are congruent to distinct residues modulo g.
Since A, has ¢ elements, so there exists some p + kd € A, which is divisible by ¢. But,
p+kd>p>n>q, | Note that n < p, otherwise (p + pd) € A, but its not a prime.]
hence p + kd is composite, a contradiction.

Now, say p,, <n—1<pni1. And n >4 = m > 2. So using the aforesaid inequality
of Panaitopol, we have

d>(n—1)# =pn# > pz:j(m) > n™ ="M (Proved).

Next we prove the lower bound on primorial function. First we prove the following
lemma,

Lemma: For all n > 59, we have,
loglogn — 0.4

log prny1 < logn + loglogn +
logn

Proof: We use a result due to Rosser and Schoenfeld!!,
pn < n(logn + loglogn — 1/2) (Vn >20)...(1)

From log(1 + z) < x for x > 0, we get for x = 1/n that,
log(n+1) <logn + +. We also get that,

) < loglogn +

1
loglog(n + 1) < log(logn + —) = loglogn + log(1 + .
n nlogn nlogn

Hence, along with (1), we obtain,
log pn+1 < log(n + 1) + log(log(n + 1) + loglog(n + 1) — 1/2)

1 1 log 1 1 1
< logn + — +loglogn + log(1 + + 08081 5— — )
n nlogn logn nlogn  2logn
1 log 1 1 1 1
< logn + — +loglogn + ogogn — —
n logn nlogn nlog®n 2logn
So it remains to show that,
1 loglogn 1 1 1 loglogn — 0.4
i + + 5 —
n logn nlogn  nlog®n 2logn logn
or,
1 1 1 1
ﬂ—l—loglogn—l———i— — —<loglogn—04
n n  nlogn 2
or,

logn+1 1
& +

<0.1
n nlogn

2



The LHS is a decreasing function of n, and at n = 59(> e?), it is < 0.1. So the above
inequality holds Vn > 59.
Next we use another estimate due to Rosser and Schoenfeld!,

m(x)

T i

> Vo >59)...(2
10g:v+210g23: (ve 259)...(2)

and an estimate of 6(p,) due to G.Robinl,

loglogn — 2.1454
logn

0(pn) > n(logn + loglogn — 1 + )(Yn >3)...(3)

For n > 59, we use (2) and the aforesaid lemma to obtain,

1 1 k loglogn — 0.4

1— — —)(1 log 1 —_

n( logn 210g2n+n)(0gn+ oglogn + logn )
> (n—m(n) + k) log pni1 (4

Now, we wish to show that, given any k , (p,) > (n — 7(n) + k) log p,+1 holds Vn >
some ng. So, in view of (3) and (4) , it suffices to show that,

1 1 k log1 —04
+ —)(logn + loglogn + welen T A
n

(1 )

B logn B 2logn logn

log1 — 2.1454
< (logn + loglogn — 1 + 0081

)

logn
or,
k log 1 — 0.4, logl log 1
K logn + loglog n + oglogn — 0 _ loglogn  log 02gn
n logn logn 2log“n
1 loglogn — 0.4, 1 1 04 _ 21454
2logn logn logn  2log’n logn logn
or,
1.2454 &k k logl —-04, k log1
+ —loglogn + —(%) + —logn < 08081
logn n n logn n logn
0.5 1 loglogn—0.4, loglogn —0.4
———logl
+(10g n)? 08087+ logn( logn )+ 2(logn)3

The last inequality holds for all n after some cut-off n,. In fact, each of the following
inequalities,

1.2454  loglogn k 0.5
< , —loglogn < ———=loglogn
logn logn n (logn)?
k loglogn — 0.4 1 loglogn —0.4 k loglogn — 0.4
— ) < ), —logn < ———r—,
n logn logn logn n 2(logn)3

holds after a certain [depending on k| cut-off ny for n. Thus our required inequality
also holds for all large enough n. Hence our proof is complete.
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