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Abstract

Let Bn be the sequence of Bernoulli numbers, with B1 = 1/2. In this

note we derive an identity involving Bernoulli numbers. Using that,

we give a proof of Euler’s formula for ζ(2n) =
∑∞

k=1 k
−2n, n ≥ 1.

1. Introduction

Starting with B0 = 1, we define Bernoulli numbers using the recursion

Bn = 1−
n−1∑
k=0

(
n

k

)
Bk

n− k + 1
, n ≥ 1.

One can show that this definition is equivalent to define {Bn}n≥0 as coefficients

of the exponential generating function:

x

ex − 1
=
∞∑
n=0

Bn
xn

n!
. (1)

In this note, we derive the following identity involving Bernoulli numbers

n∑
k=0

(
2n+ 1

2k

)
B2k2

2k = 2n+ 1, n ≥ 0. (2)

Using this, we shall prove Euler’s formula for ζ(2n) =
∑∞

k=1 k
−2n, which states

ζ(2n) =
(−1)n−1B2n(2π)2n

2(2n)!
, n ≥ 1. (3)
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2. Deriving the identity involving Bernoulli numbers

For n ≥ 0, define an = Bn2n if n is even and an = 0 if n is odd. Set bn = 1

for all n ≥ 0. Consider the exponential generating functions

A(x) =
∞∑
n=0

an
xn

n!
, B(x) =

∞∑
n=0

bn
xn

n!
, and U(x) =

∞∑
n=0

Bn
xn

n!
=

x

ex − 1
.

Observe that, B(x) = ex and A(x) =
∞∑
n=0

B2n
(2x)2n

(2n)!
=

1

2
(U(2x) + U(−2x)).

Simplifying, we get A(x) = x
e2x + 1

e2x − 1
. Now, consider C(x) = A(x)B(x). Writing

C(x) =
∑∞

n=0 cnx
n/n!, we obtain

cn
n!

=
n∑
k=0

ak
k!

bn−k
(n− k)!

=⇒ cn =
n∑
k=0

(
n

k

)
ak =

bn/2c∑
l=0

(
n

2l

)
B2l2

2l. (4)

Next, observe that

C(x)− xex = A(x)ex − xex = xex
(e2x + 1

e2x − 1
− 1
)

=
2x

ex − e−x
.

Therefore, C(x)−xex is an even function, which says that the coefficient of x2n+1

in it must be zero for all n ≥ 0. Note that the coefficient of x2n+1 in C(x)− xex

is c2n+1/(2n+ 1)!− 1/(2n)!. Hence, we get c2n+1 = 2n+ 1 for every n ≥ 0. Now

we use (4) to substitute for c2n+1 and what we get is precisely the identity (2).

3. Euler’s formula for ζ(2n)

Let us illustrate the main idea by proving ζ(2) = π2

6
. We start with De Moivre’s

formula which states (cos θ + i sin θ)m = (cosmθ + i sinmθ). We rewrite it as

(cot θ + i)m = sinmθ
sinm θ

(cotmθ + i), set m = 2N + 1 and compare the imaginary

parts on both sides to obtain(
2N + 1

1

)
(cot2 θ)N −

(
2N + 1

3

)
(cot2 θ)N−1 + · · · = sin(2N + 1)θ

(sin θ)2N+1
.

Observe that for θ = kπ
2N+1

, (1 ≤ k ≤ N) the RHS vanishes. Hence we obtain

that {cot2 kπ
2N+1

: k = 1, 2, · · · , N} are distinct roots of the polynomial

2



F (x) :=

(
2N + 1

1

)
xN −

(
2N + 1

3

)
xN−1 + · · · =

N∑
k=0

(−1)k
(

2N + 1

2k + 1

)
xN−k.

The degree of F (x) being N, those are the only roots. Therefore, using formula

for sum of roots, we get

N∑
k=1

cot2
kπ

2N + 1
=

1

2N + 1

(
2N + 1

3

)
=
N(2N − 1)

3
. (5)

Now, we know that for 0 < x < π/2, sinx < x < tanx holds, which gives

cot2 x < 1/x2 < cot2 x + 1. And for each 1 ≤ k ≤ N, we have 0 < kπ
2N+1

< π/2.

Therefore, we have

cot2
kπ

2N + 1
<
(2N + 1

kπ

)2
< cot2

kπ

2N + 1
+ 1,

for each 1 ≤ k ≤ N. Summing up this for k = 1, 2, · · · , N and using (5), we get

N(2N − 1)

3
<

(2N + 1)2

π2

N∑
k=1

1

k2
<
N(2N − 1)

3
+N. (6)

Dividing both sides by (2N + 1)2 and letting N → ∞, we see that both sides

tend to 1/6. Therefore, applying Sandwich theorem, we conclude that

ζ(2) = lim
N→∞

N∑
k=1

1

k2
=
π2

6
.

Next, we move to the general formula for ζ(2n). We shall give similar bounds to∑N
k=1 1/k2n as we had in (6). For that we need a formula for

∑N
k=1 cot2n kπ

2N+1
.

Recall that αk := cot2 kπ
2N+1

are the roots of F (x). So we need a formula for sum

of n-th powers of the roots of F (x). The well-known Vieta’s theorem provides a

formula for ej := sum of roots of F (x) taken j at a time (1 ≤ j ≤ N) which is

given by

ej =
1

2N + 1

(
2N + 1

2j + 1

)
, 1 ≤ j ≤ N.

We set e0 = 1. But what we need is a formula for pm =
∑N

k=1 α
m
k . Here an identity
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given by Newton comes to our rescue:

mem =
m∑
k=1

(−1)k−1em−kpk. (7)

Using the bounds cot2 x < 1/x2 < cot2 x+ 1, we get, for each 1 ≤ k ≤ N,

cot2n
kπ

2N + 1
<
(2N + 1

kπ

)2n
<
(

cot2
kπ

2N + 1
+ 1
)n

=
n∑
j=0

(
n

j

)
cot2j

kπ

2N + 1
.

Summing up for k = 1, 2, · · · , N we obtain

pn <
(2N + 1)2n

π2n

N∑
k=1

1

k2n
<

n∑
j=0

(
n

j

)
pj. (8)

Note, here pk’s and ek’s are functions of N ; we supressed N for simplicity in

notation. It might be surprising for you that till now Bernoulli numbers have not

come into the picture. It is the perfect time for their entry:

Lemma. For n ≥ 1, we have

lim
N→∞

(−1)n−1pn
N2n

=
B2n24n−1

(2n)!
(9)

Appealing to this, we can apply Sandwich theorem to conclude from (8) that

ζ(2n) = lim
N→∞

N∑
k=1

1

k2n
=
(π

2

)2n
lim
N→∞

pn
N2n

=
(−1)n−1B2n(2π)2n

2(2n)!
.

So the proof for (3) will be completed once we prove the above lemma.

Proof of the Lemma: We shall use strong induction on n. The base case is easy

to check. Let us assume it holds for n = 1, 2, · · · , (m− 1), that is,

lim
N→∞

(−1)k−1pk
N2k

=
B2k2

4k−1

(2k)!
, 1 ≤ k < m.

We rewrite Newton’s identity (7) as:

(−1)m−1pm
N2m

=
mem
N2m

−
m−1∑
k=1

em−k
N2(m−k)

(−1)k−1pk
N2k

(*)
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Observe that,

lim
N→∞

ek
N2k

= lim
N→∞

1

N2k

1

(2N + 1)

(
2N + 1

2k + 1

)
=

22k

(2k + 1)!
.

Therefore, letting N →∞ in (∗) we obtain

lim
N→∞

(−1)m−1pm
N2m

=
m22m

(2m+ 1)!
−

m−1∑
k=1

22(m−k)

(2(m− k) + 1)!

B2k2
4k−1

(2k)!

=
22m

(2m+ 1)!

[
m−

m−1∑
k=1

(
2m+ 1

2k

)
B2k2

2k−1

]

=
22m

(2m+ 1)!

[
m− 1

2

(
2m+ 1− 1−

(
2m+ 1

2m

)
B2m22m

)]
=
B2m24m−1

(2m)!
.

In the second last step, we have used the identity (2). This completes the induction

and hence the proof of the lemma.
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