An Identity Involving Bernoulli Numbers and a Proof of Euler's formula for $\zeta(2 n)$

Aditya Ghosh

June 2019

Abstract

Let B_{n} be the sequence of Bernoulli numbers, with $B_{1}=1 / 2$. In this note we derive an identity involving Bernoulli numbers. Using that, we give a proof of Euler's formula for $\zeta(2 n)=\sum_{k=1}^{\infty} k^{-2 n}, n \geq 1$.

1. Introduction

Starting with $B_{0}=1$, we define Bernoulli numbers using the recursion

$$
B_{n}=1-\sum_{k=0}^{n-1}\binom{n}{k} \frac{B_{k}}{n-k+1}, n \geq 1 .
$$

One can show that this definition is equivalent to define $\left\{B_{n}\right\}_{n \geq 0}$ as coefficients of the exponential generating function:

$$
\begin{equation*}
\frac{x}{e^{x}-1}=\sum_{n=0}^{\infty} B_{n} \frac{x^{n}}{n!} \tag{1}
\end{equation*}
$$

In this note, we derive the following identity involving Bernoulli numbers

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{2 n+1}{2 k} B_{2 k} 2^{2 k}=2 n+1, n \geq 0 \tag{2}
\end{equation*}
$$

Using this, we shall prove Euler's formula for $\zeta(2 n)=\sum_{k=1}^{\infty} k^{-2 n}$, which states

$$
\begin{equation*}
\zeta(2 n)=\frac{(-1)^{n-1} B_{2 n}(2 \pi)^{2 n}}{2(2 n)!}, n \geq 1 \tag{3}
\end{equation*}
$$

2. Deriving the identity involving Bernoulli numbers

For $n \geq 0$, define $a_{n}=B_{n} 2^{n}$ if n is even and $a_{n}=0$ if n is odd. Set $b_{n}=1$ for all $n \geq 0$. Consider the exponential generating functions

$$
A(x)=\sum_{n=0}^{\infty} a_{n} \frac{x^{n}}{n!}, B(x)=\sum_{n=0}^{\infty} b_{n} \frac{x^{n}}{n!}, \text { and } U(x)=\sum_{n=0}^{\infty} B_{n} \frac{x^{n}}{n!}=\frac{x}{e^{x}-1} .
$$

Observe that, $B(x)=e^{x}$ and $A(x)=\sum_{n=0}^{\infty} B_{2 n} \frac{(2 x)^{2 n}}{(2 n)!}=\frac{1}{2}(U(2 x)+U(-2 x))$. Simplifying, we get $A(x)=x \frac{e^{2 x}+1}{e^{2 x}-1}$. Now, consider $C(x)=A(x) B(x)$. Writing $C(x)=\sum_{n=0}^{\infty} c_{n} x^{n} / n$!, we obtain

$$
\begin{equation*}
\frac{c_{n}}{n!}=\sum_{k=0}^{n} \frac{a_{k}}{k!} \frac{b_{n-k}}{(n-k)!} \Longrightarrow c_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k}=\sum_{l=0}^{\lfloor n / 2\rfloor}\binom{n}{2 l} B_{2 l} 2^{2 l} . \tag{4}
\end{equation*}
$$

Next, observe that

$$
C(x)-x e^{x}=A(x) e^{x}-x e^{x}=x e^{x}\left(\frac{e^{2 x}+1}{e^{2 x}-1}-1\right)=\frac{2 x}{e^{x}-e^{-x}} .
$$

Therefore, $C(x)-x e^{x}$ is an even function, which says that the coefficient of $x^{2 n+1}$ in it must be zero for all $n \geq 0$. Note that the coefficient of $x^{2 n+1}$ in $C(x)-x e^{x}$ is $c_{2 n+1} /(2 n+1)!-1 /(2 n)!$. Hence, we get $c_{2 n+1}=2 n+1$ for every $n \geq 0$. Now we use (4) to substitute for $c_{2 n+1}$ and what we get is precisely the identity (2).

3. Euler's formula for $\zeta(2 n)$

Let us illustrate the main idea by proving $\zeta(2)=\frac{\pi^{2}}{6}$. We start with De Moivre's formula which states $(\cos \theta+i \sin \theta)^{m}=(\cos m \theta+i \sin m \theta)$. We rewrite it as $(\cot \theta+i)^{m}=\frac{\sin m \theta}{\sin ^{m} \theta}(\cot m \theta+i)$, set $m=2 N+1$ and compare the imaginary parts on both sides to obtain

$$
\binom{2 N+1}{1}\left(\cot ^{2} \theta\right)^{N}-\binom{2 N+1}{3}\left(\cot ^{2} \theta\right)^{N-1}+\cdots=\frac{\sin (2 N+1) \theta}{(\sin \theta)^{2 N+1}} .
$$

Observe that for $\theta=\frac{k \pi}{2 N+1},(1 \leq k \leq N)$ the RHS vanishes. Hence we obtain that $\left\{\cot ^{2} \frac{k \pi}{2 N+1}: k=1,2, \cdots, N\right\}$ are distinct roots of the polynomial

$$
F(x):=\binom{2 N+1}{1} x^{N}-\binom{2 N+1}{3} x^{N-1}+\cdots=\sum_{k=0}^{N}(-1)^{k}\binom{2 N+1}{2 k+1} x^{N-k} .
$$

The degree of $F(x)$ being N, those are the only roots. Therefore, using formula for sum of roots, we get

$$
\begin{equation*}
\sum_{k=1}^{N} \cot ^{2} \frac{k \pi}{2 N+1}=\frac{1}{2 N+1}\binom{2 N+1}{3}=\frac{N(2 N-1)}{3} \tag{5}
\end{equation*}
$$

Now, we know that for $0<x<\pi / 2, \sin x<x<\tan x$ holds, which gives $\cot ^{2} x<1 / x^{2}<\cot ^{2} x+1$. And for each $1 \leq k \leq N$, we have $0<\frac{k \pi}{2 N+1}<\pi / 2$. Therefore, we have

$$
\cot ^{2} \frac{k \pi}{2 N+1}<\left(\frac{2 N+1}{k \pi}\right)^{2}<\cot ^{2} \frac{k \pi}{2 N+1}+1,
$$

for each $1 \leq k \leq N$. Summing up this for $k=1,2, \cdots, N$ and using (5), we get

$$
\begin{equation*}
\frac{N(2 N-1)}{3}<\frac{(2 N+1)^{2}}{\pi^{2}} \sum_{k=1}^{N} \frac{1}{k^{2}}<\frac{N(2 N-1)}{3}+N \tag{6}
\end{equation*}
$$

Dividing both sides by $(2 N+1)^{2}$ and letting $N \rightarrow \infty$, we see that both sides tend to $1 / 6$. Therefore, applying Sandwich theorem, we conclude that

$$
\zeta(2)=\lim _{N \rightarrow \infty} \sum_{k=1}^{N} \frac{1}{k^{2}}=\frac{\pi^{2}}{6} .
$$

Next, we move to the general formula for $\zeta(2 n)$. We shall give similar bounds to $\sum_{k=1}^{N} 1 / k^{2 n}$ as we had in (6). For that we need a formula for $\sum_{k=1}^{N} \cot ^{2 n} \frac{k \pi}{2 N+1}$. Recall that $\alpha_{k}:=\cot ^{2} \frac{k \pi}{2 N+1}$ are the roots of $F(x)$. So we need a formula for sum of n-th powers of the roots of $F(x)$. The well-known Vieta's theorem provides a formula for $e_{j}:=$ sum of roots of $F(x)$ taken j at a time $(1 \leq j \leq N)$ which is given by

$$
e_{j}=\frac{1}{2 N+1}\binom{2 N+1}{2 j+1}, 1 \leq j \leq N
$$

We set $e_{0}=1$. But what we need is a formula for $p_{m}=\sum_{k=1}^{N} \alpha_{k}^{m}$. Here an identity
given by Newton comes to our rescue:

$$
\begin{equation*}
m e_{m}=\sum_{k=1}^{m}(-1)^{k-1} e_{m-k} p_{k} . \tag{7}
\end{equation*}
$$

Using the bounds $\cot ^{2} x<1 / x^{2}<\cot ^{2} x+1$, we get, for each $1 \leq k \leq N$,

$$
\cot ^{2 n} \frac{k \pi}{2 N+1}<\left(\frac{2 N+1}{k \pi}\right)^{2 n}<\left(\cot ^{2} \frac{k \pi}{2 N+1}+1\right)^{n}=\sum_{j=0}^{n}\binom{n}{j} \cot ^{2 j} \frac{k \pi}{2 N+1} .
$$

Summing up for $k=1,2, \cdots, N$ we obtain

$$
\begin{equation*}
p_{n}<\frac{(2 N+1)^{2 n}}{\pi^{2 n}} \sum_{k=1}^{N} \frac{1}{k^{2 n}}<\sum_{j=0}^{n}\binom{n}{j} p_{j} . \tag{8}
\end{equation*}
$$

Note, here p_{k} 's and e_{k} 's are functions of N; we supressed N for simplicity in notation. It might be surprising for you that till now Bernoulli numbers have not come into the picture. It is the perfect time for their entry:
Lemma. For $n \geq 1$, we have

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{(-1)^{n-1} p_{n}}{N^{2 n}}=\frac{B_{2 n} 2^{4 n-1}}{(2 n)!} \tag{9}
\end{equation*}
$$

Appealing to this, we can apply Sandwich theorem to conclude from (8) that

$$
\zeta(2 n)=\lim _{N \rightarrow \infty} \sum_{k=1}^{N} \frac{1}{k^{2 n}}=\left(\frac{\pi}{2}\right)^{2 n} \lim _{N \rightarrow \infty} \frac{p_{n}}{N^{2 n}}=\frac{(-1)^{n-1} B_{2 n}(2 \pi)^{2 n}}{2(2 n)!} .
$$

So the proof for (3) will be completed once we prove the above lemma.
Proof of the Lemma: We shall use strong induction on n. The base case is easy to check. Let us assume it holds for $n=1,2, \cdots,(m-1)$, that is,

$$
\lim _{N \rightarrow \infty} \frac{(-1)^{k-1} p_{k}}{N^{2 k}}=\frac{B_{2 k} 2^{4 k-1}}{(2 k)!}, 1 \leq k<m
$$

We rewrite Newton's identity (7) as:

$$
\begin{equation*}
\frac{(-1)^{m-1} p_{m}}{N^{2 m}}=\frac{m e_{m}}{N^{2 m}}-\sum_{k=1}^{m-1} \frac{e_{m-k}}{N^{2(m-k)}} \frac{(-1)^{k-1} p_{k}}{N^{2 k}} \tag{}
\end{equation*}
$$

Observe that,

$$
\lim _{N \rightarrow \infty} \frac{e_{k}}{N^{2 k}}=\lim _{N \rightarrow \infty} \frac{1}{N^{2 k}} \frac{1}{(2 N+1)}\binom{2 N+1}{2 k+1}=\frac{2^{2 k}}{(2 k+1)!}
$$

Therefore, letting $N \rightarrow \infty$ in (*) we obtain

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \frac{(-1)^{m-1} p_{m}}{N^{2 m}} & =\frac{m 2^{2 m}}{(2 m+1)!}-\sum_{k=1}^{m-1} \frac{2^{2(m-k)}}{(2(m-k)+1)!} \frac{B_{2 k} 2^{4 k-1}}{(2 k)!} \\
& =\frac{2^{2 m}}{(2 m+1)!}\left[m-\sum_{k=1}^{m-1}\binom{2 m+1}{2 k} B_{2 k} 2^{2 k-1}\right] \\
& =\frac{2^{2 m}}{(2 m+1)!}\left[m-\frac{1}{2}\left(2 m+1-1-\binom{2 m+1}{2 m} B_{2 m} 2^{2 m}\right)\right] \\
& =\frac{B_{2 m} 2^{4 m-1}}{(2 m)!}
\end{aligned}
$$

In the second last step, we have used the identity (2). This completes the induction and hence the proof of the lemma.

