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Abstract

Let B, be the sequence of Bernoulli numbers, with B; = 1/2. In this
note we derive an identity involving Bernoulli numbers. Using that,
we give a proof of Euler’s formula for ¢(2n) =Y 77 k™", n > 1.

1. Introduction
Starting with By = 1, we define Bernoulli numbers using the recursion
n—1 n Bk
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One can show that this definition is equivalent to define {B, },>0 as coefficients

of the exponential generating function:
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In this note, we derive the following identity involving Bernoulli numbers
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Using this, we shall prove Euler’s formula for ((2n) = "7, k=", which states
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2. Deriving the identity involving Bernoulli numbers

For n > 0, define a,, = B,2" if n is even and a,, = 0 if n is odd. Set b, =

for all n > 0. Consider the exponential generating functions

> x" . an z"
:§anm,3($):§bnm, and U(x Z = 1.

Observe that, B(x) = e* and A(x ZBQn = %(U(Qx) + U(—2x2)).
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Simplifying, we get A(z) = :1:62 i_ T Now, consider C(x) = A(x)B(z). Writing

C(z) =3 cax™/nl, we obtain
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Next, observe that
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C(x) — ze® = A(x)e® — xe® = xex<

eT — efac'

Therefore, C'(x) —ze® is an even function, which says that the coefficient of 22"+

in it must be zero for all n > 0. Note that the coefficient of z?"*! in C'(z) — ze®
is copt1/(2n + 1) — 1/(2n)!. Hence, we get c¢o,11 = 2n + 1 for every n > 0. Now
we use (4) to substitute for ¢g,41 and what we get is precisely the identity (2).

3. Euler’s formula for ((2n)

Let us illustrate the main idea by proving ((2) = %2. We start with De Moivre’s
formula which states (cosf + isin#)™ = (cosmé + isinmf). We rewrite it as
(cot @ 4 i)™ = S8 (cot mf + i), set m = 2N + 1 and compare the imaginary
parts on both sides to obtain

<2N - 1) (cot? )N — <2N3—|— 1) (cot? N1 4 ... sin(2N + 1)9‘
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Observe that for 0 = 2N+1, (1 < k < N) the RHS vanishes. Hence we obtain

that {cot? 2N11 :k=1,2,--- N} are distinct roots of the polynomial
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The degree of F'(x) being N, those are the only roots. Therefore, using formula
for sum of roots, we get

N

k 1 (2N+1\ N@N-1
Y cot? ot = ( " )=¥- (5)
L7 2N 41 2N +1\ 3 3

Now, we know that for 0 < = < 7/2, sinz < z < tanz holds, Which gives
cot?z < 1/2? < cot?x + 1. And for each 1 < k < N, we have 0 < < 7/2.
Therefore, we have
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for each 1 < k < N. Summing up this for k = 1,2,--- | N and using (5), we get
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Dividing both sides by (2N + 1)? and letting N — oo, we see that both sides
tend to 1/6. Therefore, applying Sandwich theorem, we conclude that

Next, we move to the general formula for ((2n). We shall give similar bounds to
SV 1/k* as we had in (6). For that we need a formula for S~ | cot?” e
Recall that ay, := cot? 5 N "5 are the roots of F'(z). So we need a formula for sum
of n-th powers of the roots of F'(x). The well-known Vieta’s theorem provides a

formula for e; := sum of roots of F(z) taken j at a time (1 < j < N) which is
given by
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We set eg = 1. But what we need is a formula for p,, = chvzl aj'. Here an identity



given by Newton comes to our rescue:

mem = > (1) em_rps- (7)
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Using the bounds cot?z < 1/2? < cot? z + 1, we get, for each 1 < k < N,
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Summing up for k =1,2,--- | N we obtain
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Note, here pi’s and e;’s are functions of N; we supressed N for simplicity in
notation. It might be surprising for you that till now Bernoulli numbers have not
come into the picture. It is the perfect time for their entry:

Lemma. For n > 1, we have
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Appealing to this, we can apply Sandwich theorem to conclude from (8) that
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So the proof for (3) will be completed once we prove the above lemma.
Proof of the Lemma: We shall use strong induction on n. The base case is easy

to check. Let us assume it holds for n =1,2,--- ,(m — 1), that is,
) (_1)k_1pk B2k24k_1
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We rewrite Newton’s identity (7) as:
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Observe that,

. €k , 1 1 2N +1 22k
lim — = lim — ——— = —.
N—oo N?¥ N—ooo N2k (2N 4+ 1)\ 2k + 1 (2k + 1)!

Therefore, letting N — oo in (%) we obtain
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In the second last step, we have used the identity (2). This completes the induction
and hence the proof of the lemma.



