Complex Numbers: Day 5

Aditya Ghosh

20 December, 2020
In today's class we will see some more applications of complex numbers.
Problem 1. Suppose that z_{1}, z_{2}, z_{3} are the vertices of a triangle and $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|$ and $z_{1}+z_{2}+z_{3}=0$. Show that the triangle must be equilateral.
Solution. Since $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|$, the points z_{1}, z_{2}, z_{3} all lie on a circle centred at the origin. On the other hand, the centroid of the triangle is has complex coordinate $\frac{1}{3}\left(z_{1}+z_{2}+z_{3}\right)=0$. Thus, the origin is both the circumcentre and the centroid of the triangle. We know that if the centroid and the circumcentre of a triangle coincide, then it must be equilateral.

Problem 2. Determine the value of $\cos \frac{\pi}{7}-\cos \frac{2 \pi}{7}+\cos \frac{3 \pi}{7}$.
Solution. Let $z=\cos \frac{\pi}{7}+i \sin \frac{\pi}{7}$. Then

$$
\begin{equation*}
\cos \frac{\pi}{7}-\cos \frac{2 \pi}{7}+\cos \frac{3 \pi}{7}=\operatorname{Re}\left(z-z^{2}+z^{3}\right) \tag{1}
\end{equation*}
$$

(This follows from de Moivre's theorem: $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$.) Again, by de Moivre's theorem, $z^{7}=\cos \pi+i \sin \pi=-1$. Therefore, z is a complex root of the equation $z^{7}+1=0$. Since $z \neq-1$, we can factor it out and cancel the factor $(z+1)$.

$$
\begin{aligned}
& 0=z^{7}+1=(z+1)\left(1-z+z^{2}-z^{3}+z^{4}-z^{5}+z^{6}\right) \\
\Longrightarrow & 1-z+z^{2}-z^{3}+z^{4}-z^{5}+z^{6}=0 \\
\Longrightarrow & 1-\left(z-z^{2}+z^{3}\right)+z^{3}\left(z-z^{2}+z^{3}\right)=0 \\
\Longrightarrow & \left(1-z^{3}\right)\left(z-z^{2}+z^{3}\right)=1 .
\end{aligned}
$$

Combining this with (1), we get

$$
\cos \frac{\pi}{7}-\cos \frac{2 \pi}{7}+\cos \frac{3 \pi}{7}=\operatorname{Re}\left(\frac{1}{1-z^{3}}\right) .
$$

Let's call $z^{3}=w$. Since $|w|=1$, we have $\bar{w}=1 / w$, and hence

$$
\operatorname{Re}\left(\frac{1}{1-w}\right)=\frac{1}{2}\left(\frac{1}{1-w}+\frac{1}{1-\bar{w}}\right)=\frac{1}{2}\left(\frac{1}{1-w}+\frac{1}{1-1 / w}\right)=\frac{1}{2} .
$$

Hence the value of the required expression is $1 / 2$.

Problem 3. Calculate the sum $\sum_{k=0}^{n}\binom{n}{k} \cos k \alpha$ where $\alpha \in[0, \pi]$.
Solution. Let $A_{n}=\sum_{k=0}^{n}\binom{n}{k} \cos k \alpha$, and $B_{n}=\sum_{k=0}^{n}\binom{n}{k} \sin k \alpha$. Then,

$$
\begin{array}{rlr}
A_{n}+i B_{n} & =\sum_{k=0}^{n}\binom{n}{k}(\cos k \alpha+i \sin k \alpha) & \\
& =\sum_{k=0}^{n}\binom{n}{k}(\cos \alpha+i \sin \alpha)^{k} & \text { (by de Moivre's theorem) } \\
& =(1+(\cos \alpha+i \sin \alpha))^{n} & \\
& =\left(2 \cos \frac{\alpha}{2}\right)^{n}\left(\cos \frac{\alpha}{2}+i \sin \frac{\alpha}{2}\right)^{n} & \\
& =\left(2 \cos \frac{\alpha}{2}\right)^{n}\left(\cos \frac{n \alpha}{2}+i \sin \frac{n \alpha}{2}\right) . & \text { (by de Moinial theorem) } \\
\text { (be's theorem) }
\end{array}
$$

Therefore,

$$
A_{n}=\left(2 \cos \frac{\alpha}{2}\right)^{n} \cos \frac{n \alpha}{2} .
$$

Note that as a by-product we also got an expression for the B_{n} defined above.
Problem 4. Suppose that a, b, c are complex numbers such that all the roots of the equation $x^{3}+a x^{2}+b x+c=0$ have equal absolute value (modulus if they are complex). Prove that $a=0 \Longleftrightarrow b=0$.
Solution. Let z_{1}, z_{2}, z_{3} be roots. We are given that $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=r$, say. Note that if $r=0$ then $z_{1}=z_{2}=z_{3}=0$, and the conclusion holds. So let us now assume that $r>0$. From Vieta's theorem, $z_{1}+z_{2}+z_{3}=-a$ and $z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}=b$. Hence,

$$
\begin{aligned}
a=0 & \Longleftrightarrow z_{1}+z_{2}+z_{3}=0 \\
& \Longleftrightarrow \overline{z_{1}}+\overline{z_{2}}+\overline{z_{3}}=0 \\
& \Longleftrightarrow \frac{r^{2}}{z_{1}}+\frac{r^{2}}{z_{2}}+\frac{r^{2}}{z_{3}}=0 \\
& \Longleftrightarrow z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}=0 \\
& \Longleftrightarrow b=0 .
\end{aligned}
$$

This completes the proof.

Problem 5. Let $n \geq 3$ be an integer and a be any non-zero real number. Prove that any non-real root of the equation $x^{n}+a x+1=0$ must satisfy the inequality

$$
|z| \geq \frac{1}{\sqrt[n]{n-1}}
$$

Solution. Let $z=r(\cos \theta+i \sin \theta)$, where $\theta \in(-\pi, \pi]$. Since we are working with only the non-real roots of the equation, we assume $\theta \neq 0, \pi$. Plugging this z into the given equation, and using de Moivre's theorem, we get

$$
r^{n}(\cos n \theta+i \sin n \theta)+\operatorname{ar}(\cos \theta+i \sin \theta)+1=0
$$

which is equivalent to the following equations:

$$
r^{n} \cos n \theta+a r \cos \theta=-1, \text { and } r^{n} \sin n \theta+a r \sin \theta=0 .
$$

We eliminate r, by subtracting $\cos \theta$ times the second equation from $\sin \theta$ times the first equation, and get

$$
r^{n}(\cos n \theta \sin \theta-\sin n \theta \cos \theta)=-\sin \theta \Longrightarrow r^{n} \sin (n-1) \theta=\sin \theta
$$

We can prove by induction that the inequality $|\sin k \theta| \leq k|\sin \theta|$ holds for all $k \in \mathbb{N}$ and for every $\theta \in(-\pi, \pi]$. (check!) Hence, $|\sin (n-1) \theta| \leq(n-1)|\sin \theta|$, which in turn implies that

$$
|\sin \theta|=r^{n}|\sin (n-1) \theta| \leq(n-1) r^{n}|\sin \theta| .
$$

Since $\sin \theta \neq 0$, we conclude that $r^{n} \geq 1 /(n-1)$, as required.
Hint for the induction:

$$
\begin{aligned}
|\sin (k+1) \theta| & =|\sin k \theta \cos \theta+\cos k \theta \sin \theta| \\
& \leq|\sin k \theta \cos \theta|+|\cos k \theta \sin \theta| \\
& \leq|\sin k \theta|+|\sin \theta| .
\end{aligned}
$$

Problem 6. On the sides $A B$ and $A C$ of $\triangle A B C$ equilateral triangles $A B N$ and $A C M$ are constructed, external to the triangle. If P, Q, R be the midpoints of the segments $B C, A M$, and $A N$ respectively, show that $\triangle P Q R$ is equilateral.
Solution. Looking at Figure 1, let us consider a complex coordinate system with point A being the origin. Let us denote by x the complex coordinate of a point X. Consider the complex number $\varepsilon=\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}$. Since multiplication by ε results in a 60° anticlockwise rotation about the origin,

$$
m=c \varepsilon, \text { and } n=b / \varepsilon .
$$

Figure 1: Diagram for Problem 6
Hence the coordinates of the vertices of $\triangle P Q R$ are given by

$$
p=\frac{b+c}{2}, \quad q=\frac{c}{2} \varepsilon, \quad r=\frac{b}{2} \frac{1}{\varepsilon} .
$$

We know that if $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}$ then z_{1}, z_{2}, z_{3} form the vertices of an equilateral triangle. Hence it suffices to show here that

$$
\begin{equation*}
p^{2}+q^{2}+r^{2}=p q+q r+r p . \tag{2}
\end{equation*}
$$

To show this, first note that $\varepsilon^{3}+1=0, \varepsilon \neq-1 \Longrightarrow \varepsilon^{2}-\varepsilon+1=0$. We shall use the relation $1+\varepsilon^{2}=\varepsilon$ to simplify both the LHS and RHS of (2), as follows.

$$
\begin{aligned}
p q+q r+r p & =\frac{b c}{4} \varepsilon+\frac{c^{2}}{4} \varepsilon+\frac{b c}{4}+\frac{b^{2}}{4} \frac{1}{\varepsilon}+\frac{b c}{4} \frac{1}{\varepsilon} \\
& =\frac{b c}{4} \cdot \frac{\varepsilon^{2}+\varepsilon+1}{\varepsilon}+\frac{c^{2}}{4} \varepsilon+\frac{b^{2}}{4} \frac{1}{\varepsilon} \\
& =\frac{b c}{4} \cdot \frac{2 \nexists}{\nexists}+\frac{c^{2}}{4} \varepsilon+\frac{b^{2}}{4} \frac{1}{\varepsilon} . \quad\left(\text { since } \varepsilon^{2}+1=\varepsilon\right)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
p^{2}+q^{2}+r^{2} & =\frac{(b+c)^{2}}{4}+\frac{c^{2}}{4} \varepsilon^{2}+\frac{b^{2}}{4} \frac{1}{\varepsilon^{2}} \\
& =\frac{b c}{2}+\frac{c^{2}}{4}\left(\varepsilon^{2}+1\right)+\frac{b^{2}}{4} \cdot \frac{1+\varepsilon^{2}}{\varepsilon^{2}} \\
& =\frac{b c}{2}+\frac{c^{2}}{4} \varepsilon+\frac{b^{2}}{4} \frac{\notin}{\varepsilon^{2}} . \quad\left(\text { since } \varepsilon^{2}+1=\varepsilon\right)
\end{aligned}
$$

Therefore the LHS and RHS of equation (2) are equal, which completes the proof.

