Complex Numbers: Day 5

Aditya Ghosh

20 December, 2020

In today's class we will see some more applications of complex numbers.

Problem 1. Suppose that z_1, z_2, z_3 are the vertices of a triangle and $|z_1| = |z_2| = |z_3|$ and $z_1 + z_2 + z_3 = 0$. Show that the triangle must be equilateral. Solution. Since $|z_1| = |z_2| = |z_3|$, the points z_1, z_2, z_3 all lie on a circle centred at the origin. On the other hand, the centroid of the triangle is has complex coordinate $\frac{1}{3}(z_1 + z_2 + z_3) = 0$. Thus, the origin is both the circumcentre and the centroid of the triangle. We know that if the centroid and the circumcentre of a triangle coincide, then it must be equilateral.

Problem 2. Determine the value of
$$\cos \frac{\pi}{7} - \cos \frac{2\pi}{7} + \cos \frac{3\pi}{7}$$
.
Solution. Let $z = \cos \frac{\pi}{7} + i \sin \frac{\pi}{7}$. Then
 $\cos \frac{\pi}{7} - \cos \frac{2\pi}{7} + \cos \frac{3\pi}{7} = \operatorname{Re}(z - z^2 + z^3).$ (1)

(This follows from de Moivre's theorem: $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$.) Again, by de Moivre's theorem, $z^7 = \cos \pi + i \sin \pi = -1$. Therefore, z is a complex root of the equation $z^7 + 1 = 0$. Since $z \neq -1$, we can factor it out and cancel the factor (z + 1).

$$0 = z^{7} + 1 = (z + 1)(1 - z + z^{2} - z^{3} + z^{4} - z^{5} + z^{6})$$

$$\implies 1 - z + z^{2} - z^{3} + z^{4} - z^{5} + z^{6} = 0$$

$$\implies 1 - (z - z^{2} + z^{3}) + z^{3}(z - z^{2} + z^{3}) = 0$$

$$\implies (1 - z^{3})(z - z^{2} + z^{3}) = 1.$$

Combining this with (1), we get

$$\cos\frac{\pi}{7} - \cos\frac{2\pi}{7} + \cos\frac{3\pi}{7} = \operatorname{Re}\left(\frac{1}{1-z^3}\right).$$

Let's call $z^3 = w$. Since |w| = 1, we have $\overline{w} = 1/w$, and hence

$$\operatorname{Re}\left(\frac{1}{1-w}\right) = \frac{1}{2}\left(\frac{1}{1-w} + \frac{1}{1-\overline{w}}\right) = \frac{1}{2}\left(\frac{1}{1-w} + \frac{1}{1-1/w}\right) = \frac{1}{2}$$

Hence the value of the required expression is 1/2.

Problem 3. Calculate the sum
$$\sum_{k=0}^{n} \binom{n}{k} \cos k\alpha$$
 where $\alpha \in [0, \pi]$.
Solution. Let $A_n = \sum_{k=0}^{n} \binom{n}{k} \cos k\alpha$, and $B_n = \sum_{k=0}^{n} \binom{n}{k} \sin k\alpha$. Then,
 $A_n + iB_n = \sum_{k=0}^{n} \binom{n}{k} (\cos k\alpha + i \sin k\alpha)$
 $= \sum_{k=0}^{n} \binom{n}{k} (\cos \alpha + i \sin \alpha)^k$ (by de Moivre's theorem)
 $= (1 + (\cos \alpha + i \sin \alpha))^n$ (by binomial theorem)
 $= \left(2 \cos \frac{\alpha}{2}\right)^n \left(\cos \frac{\alpha}{2} + i \sin \frac{\alpha}{2}\right)^n$
 $= \left(2 \cos \frac{\alpha}{2}\right)^n \left(\cos \frac{n\alpha}{2} + i \sin \frac{n\alpha}{2}\right)$. (by de Moivre's theorem)

Therefore,

$$A_n = \left(2\cos\frac{\alpha}{2}\right)^n \cos\frac{n\alpha}{2}.$$

Note that as a by-product we also got an expression for the B_n defined above.

Problem 4. Suppose that a, b, c are complex numbers such that all the roots of the equation $x^3 + ax^2 + bx + c = 0$ have equal absolute value (modulus if they are complex). Prove that $a = 0 \iff b = 0$.

Solution. Let z_1, z_2, z_3 be roots. We are given that $|z_1| = |z_2| = |z_3| = r$, say. Note that if r = 0 then $z_1 = z_2 = z_3 = 0$, and the conclusion holds. So let us now assume that r > 0. From Vieta's theorem, $z_1 + z_2 + z_3 = -a$ and $z_1z_2 + z_2z_3 + z_3z_1 = b$. Hence,

$$a = 0 \iff z_1 + z_2 + z_3 = 0$$
$$\iff \overline{z_1} + \overline{z_2} + \overline{z_3} = 0$$
$$\iff \frac{r^2}{z_1} + \frac{r^2}{z_2} + \frac{r^2}{z_3} = 0$$
$$\iff z_1 z_2 + z_2 z_3 + z_3 z_1 = 0$$
$$\iff b = 0.$$

This completes the proof.

Problem 5. Let $n \ge 3$ be an integer and a be any non-zero real number. Prove that any non-real root of the equation $x^n + ax + 1 = 0$ must satisfy the inequality

$$|z| \ge \frac{1}{\sqrt[n]{n-1}}.$$

Solution. Let $z = r(\cos \theta + i \sin \theta)$, where $\theta \in (-\pi, \pi]$. Since we are working with only the non-real roots of the equation, we assume $\theta \neq 0, \pi$. Plugging this z into the given equation, and using de Moivre's theorem, we get

$$r^{n}(\cos n\theta + i\sin n\theta) + ar(\cos \theta + i\sin \theta) + 1 = 0$$

which is equivalent to the following equations:

$$r^n \cos n\theta + ar \cos \theta = -1$$
, and $r^n \sin n\theta + ar \sin \theta = 0$.

We eliminate r, by subtracting $\cos \theta$ times the second equation from $\sin \theta$ times the first equation, and get

$$r^{n}\left(\cos n\theta\sin\theta - \sin n\theta\cos\theta\right) = -\sin\theta \implies r^{n}\sin(n-1)\theta = \sin\theta.$$

We can prove by induction that the inequality $|\sin k\theta| \le k |\sin \theta|$ holds for all $k \in \mathbb{N}$ and for every $\theta \in (-\pi, \pi]$. (check!) Hence, $|\sin(n-1)\theta| \le (n-1)|\sin \theta|$, which in turn implies that

$$|\sin\theta| = r^n |\sin(n-1)\theta| \le (n-1)r^n |\sin\theta|.$$

Since $\sin \theta \neq 0$, we conclude that $r^n \geq 1/(n-1)$, as required. Hint for the induction:

$$|\sin(k+1)\theta| = |\sin k\theta \cos \theta + \cos k\theta \sin \theta|$$

$$\leq |\sin k\theta \cos \theta| + |\cos k\theta \sin \theta|$$

$$\leq |\sin k\theta| + |\sin \theta|.$$

Problem 6. On the sides AB and AC of $\triangle ABC$ equilateral triangles ABN and ACM are constructed, external to the triangle. If P, Q, R be the midpoints of the segments BC, AM, and AN respectively, show that $\triangle PQR$ is equilateral.

Solution. Looking at Figure 1, let us consider a complex coordinate system with point A being the origin. Let us denote by x the complex coordinate of a point X. Consider the complex number $\varepsilon = \cos \frac{\pi}{6} + i \sin \frac{\pi}{6}$. Since multiplication by ε results in a 60° anticlockwise rotation about the origin,

$$m = c\varepsilon$$
, and $n = b/\varepsilon$.

Figure 1: Diagram for Problem 6

Hence the coordinates of the vertices of $\triangle PQR$ are given by

$$p = \frac{b+c}{2}, \quad q = \frac{c}{2}\varepsilon, \quad r = \frac{b}{2}\frac{1}{\varepsilon}.$$

We know that if $z_1^2 + z_2^2 + z_3^2 = z_1z_2 + z_2z_3 + z_3z_1$ then z_1, z_2, z_3 form the vertices of an equilateral triangle. Hence it suffices to show here that

$$p^{2} + q^{2} + r^{2} = pq + qr + rp.$$
 (2)

To show this, first note that $\varepsilon^3 + 1 = 0, \varepsilon \neq -1 \implies \varepsilon^2 - \varepsilon + 1 = 0$. We shall use the relation $1 + \varepsilon^2 = \varepsilon$ to simplify both the LHS and RHS of (2), as follows.

$$pq + qr + rp = \frac{bc}{4}\varepsilon + \frac{c^2}{4}\varepsilon + \frac{bc}{4} + \frac{b^2}{4}\frac{1}{\varepsilon} + \frac{bc}{4}\frac{1}{\varepsilon}$$
$$= \frac{bc}{4} \cdot \frac{\varepsilon^2 + \varepsilon + 1}{\varepsilon} + \frac{c^2}{4}\varepsilon + \frac{b^2}{4}\frac{1}{\varepsilon}$$
$$= \frac{bc}{4} \cdot \frac{2\not{\varepsilon}}{\not{\varepsilon}} + \frac{c^2}{4}\varepsilon + \frac{b^2}{4}\frac{1}{\varepsilon}. \quad (\text{since } \varepsilon^2 + 1 = \varepsilon)$$

On the other hand,

$$p^{2} + q^{2} + r^{2} = \frac{(b+c)^{2}}{4} + \frac{c^{2}}{4}\varepsilon^{2} + \frac{b^{2}}{4}\frac{1}{\varepsilon^{2}}$$
$$= \frac{bc}{2} + \frac{c^{2}}{4}(\varepsilon^{2} + 1) + \frac{b^{2}}{4} \cdot \frac{1+\varepsilon^{2}}{\varepsilon^{2}}$$
$$= \frac{bc}{2} + \frac{c^{2}}{4}\varepsilon + \frac{b^{2}}{4}\frac{\cancel{\varepsilon}}{\cancel{\varepsilon}^{2}}. \quad (\text{since } \varepsilon^{2} + 1 = \varepsilon)$$

Therefore the LHS and RHS of equation (2) are equal, which completes the proof.