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In today’s class we will see some more applications of complex numbers.

Problem 1. Suppose that z1, z2, z3 are the vertices of a triangle and |z1| = |z2| = |z3| and

z1 + z2 + z3 = 0. Show that the triangle must be equilateral.

Solution. Since |z1| = |z2| = |z3|, the points z1, z2, z3 all lie on a circle centred at the origin.

On the other hand, the centroid of the triangle is has complex coordinate 1
3
(z1 +z2 +z3) = 0.

Thus, the origin is both the circumcentre and the centroid of the triangle. We know that if

the centroid and the circumcentre of a triangle coincide, then it must be equilateral. �

Problem 2. Determine the value of cos
π

7
− cos

2π

7
+ cos

3π

7
.

Solution. Let z = cos
π

7
+ i sin

π

7
. Then

cos
π

7
− cos

2π

7
+ cos

3π

7
= Re(z − z2 + z3). (1)

(This follows from de Moivre’s theorem: (cos θ + i sin θ)n = cosnθ + i sinnθ.) Again, by de

Moivre’s theorem, z7 = cos π + i sin π = −1. Therefore, z is a complex root of the equation

z7 + 1 = 0. Since z 6= −1, we can factor it out and cancel the factor (z + 1).

0 = z7 + 1 = (z + 1)(1− z + z2 − z3 + z4 − z5 + z6)

=⇒ 1− z + z2 − z3 + z4 − z5 + z6 = 0

=⇒ 1− (z − z2 + z3) + z3(z − z2 + z3) = 0

=⇒ (1− z3)(z − z2 + z3) = 1.

Combining this with (1), we get

cos
π

7
− cos

2π

7
+ cos

3π

7
= Re

(
1

1− z3

)
.

Let’s call z3 = w. Since |w| = 1, we have w = 1/w, and hence

Re

(
1

1− w

)
=

1

2

(
1

1− w
+

1

1− w

)
=

1

2

(
1

1− w
+

1

1− 1/w

)
=

1

2
.

Hence the value of the required expression is 1/2. �
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Problem 3. Calculate the sum
n∑
k=0

(
n

k

)
cos kα where α ∈ [0, π].

Solution. Let An =
n∑
k=0

(
n

k

)
cos kα, and Bn =

n∑
k=0

(
n

k

)
sin kα. Then,

An + iBn =
n∑
k=0

(
n

k

)
(cos kα + i sin kα)

=
n∑
k=0

(
n

k

)
(cosα + i sinα)k (by de Moivre’s theorem)

= (1 + (cosα + i sinα))n (by binomial theorem)

=
(

2 cos
α

2

)n(
cos

α

2
+ i sin

α

2

)n
=
(

2 cos
α

2

)n(
cos

nα

2
+ i sin

nα

2

)
. (by de Moivre’s theorem)

Therefore,

An =
(

2 cos
α

2

)n
cos

nα

2
.

Note that as a by-product we also got an expression for the Bn defined above. �

Problem 4. Suppose that a, b, c are complex numbers such that all the roots of the equation

x3 + ax2 + bx+ c = 0 have equal absolute value (modulus if they are complex). Prove that

a = 0 ⇐⇒ b = 0.

Solution. Let z1, z2, z3 be roots. We are given that |z1| = |z2| = |z3| = r, say. Note that if

r = 0 then z1 = z2 = z3 = 0, and the conclusion holds. So let us now assume that r > 0.

From Vieta’s theorem, z1 + z2 + z3 = −a and z1z2 + z2z3 + z3z1 = b. Hence,

a = 0 ⇐⇒ z1 + z2 + z3 = 0

⇐⇒ z1 + z2 + z3 = 0

⇐⇒ r2

z1
+
r2

z2
+
r2

z3
= 0

⇐⇒ z1z2 + z2z3 + z3z1 = 0

⇐⇒ b = 0.

This completes the proof. �
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Problem 5. Let n ≥ 3 be an integer and a be any non-zero real number. Prove that any

non-real root of the equation xn + ax+ 1 = 0 must satisfy the inequality

|z| ≥ 1
n
√
n− 1

.

Solution. Let z = r(cos θ + i sin θ), where θ ∈ (−π, π]. Since we are working with only the

non-real roots of the equation, we assume θ 6= 0, π. Plugging this z into the given equation,

and using de Moivre’s theorem, we get

rn(cosnθ + i sinnθ) + ar(cos θ + i sin θ) + 1 = 0

which is equivalent to the following equations:

rn cosnθ + ar cos θ = −1, and rn sinnθ + ar sin θ = 0.

We eliminate r, by subtracting cos θ times the second equation from sin θ times the first

equation, and get

rn (cosnθ sin θ − sinnθ cos θ) = − sin θ =⇒ rn sin(n− 1)θ = sin θ.

We can prove by induction that the inequality | sin kθ| ≤ k| sin θ| holds for all k ∈ N and for

every θ ∈ (−π, π]. (check!) Hence, | sin(n− 1)θ| ≤ (n− 1)| sin θ|, which in turn implies that

| sin θ| = rn| sin(n− 1)θ| ≤ (n− 1)rn| sin θ|.

Since sin θ 6= 0, we conclude that rn ≥ 1/(n− 1), as required. �

Hint for the induction:

| sin(k + 1)θ| = | sin kθ cos θ + cos kθ sin θ|
≤ | sin kθ cos θ|+ | cos kθ sin θ|
≤ | sin kθ|+ | sin θ|.

Problem 6. On the sides AB and AC of 4ABC equilateral triangles ABN and ACM are

constructed, external to the triangle. If P,Q,R be the midpoints of the segments BC,AM,

and AN respectively, show that 4PQR is equilateral.

Solution. Looking at Figure 1, let us consider a complex coordinate system with point A

being the origin. Let us denote by x the complex coordinate of a point X. Consider the

complex number ε = cos π
6

+ i sin π
6
. Since multiplication by ε results in a 60◦ anticlockwise

rotation about the origin,

m = cε, and n = b/ε.
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Figure 1: Diagram for Problem 6

Hence the coordinates of the vertices of 4PQR are given by

p =
b+ c

2
, q =

c

2
ε, r =

b

2

1

ε
.

We know that if z21 + z22 + z23 = z1z2 + z2z3 + z3z1then z1, z2, z3 form the vertices of an

equilateral triangle. Hence it suffices to show here that

p2 + q2 + r2 = pq + qr + rp. (2)

To show this, first note that ε3 + 1 = 0, ε 6= −1 =⇒ ε2 − ε + 1 = 0. We shall use the

relation 1 + ε2 = ε to simplify both the LHS and RHS of (2), as follows.

pq + qr + rp =
bc

4
ε+

c2

4
ε+

bc

4
+
b2

4

1

ε
+
bc

4

1

ε

=
bc

4
· ε

2 + ε+ 1

ε
+
c2

4
ε+

b2

4

1

ε

=
bc

4
· 2�ε

�ε
+
c2

4
ε+

b2

4

1

ε
. (since ε2 + 1 = ε)

On the other hand,

p2 + q2 + r2 =
(b+ c)2

4
+
c2

4
ε2 +

b2

4

1

ε2

=
bc

2
+
c2

4
(ε2 + 1) +

b2

4
· 1 + ε2

ε2

=
bc

2
+
c2

4
ε+

b2

4
�ε

ε�2
. (since ε2 + 1 = ε)

Therefore the LHS and RHS of equation (2) are equal, which completes the proof. �
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