Ramanujan School of Mathematics

Class Test on Complex Numbers

April, 2019

Total time is 2 hours. Total marks is 50. Attempt as many as you can.
Answers without proper explanations will fetch no mark.

1. (10 marks) Suppose that z_{1}, \cdots, z_{n} and w_{1}, \cdots, w_{n} are complex numbers with $\left|z_{i}\right| \leq 1$ and $\left|w_{i}\right| \leq 1$ for each $i=1,2, \cdots, n$. Show that,

$$
\left|z_{1} z_{2} \cdots z_{n}-w_{1} w_{2} \cdots w_{n}\right| \leq\left|z_{1}-w_{1}\right|+\left|z_{2}-w_{2}\right|+\cdots+\left|z_{n}-w_{n}\right|
$$

2. (10 marks) On the sides $A B, B C, C D, D A$ of a quadrilateral $A B C D$, we construct squares (exterior to the quadrilateral) with centers $O_{1}, O_{2}, O_{3}, O_{4}$ respectively. Prove that $O_{1} O_{3} \perp O_{2} O_{4}$ and $O_{1} O_{3}=O_{2} O_{4}$.
3. (10 marks) Find all positive real numbers x, y satisfying the system of equations:

$$
\begin{aligned}
& \sqrt{x}\left(1+\frac{1}{x+y}\right)=\frac{3}{2} \\
& \sqrt{y}\left(1-\frac{1}{x+y}\right)=\frac{1}{2}
\end{aligned}
$$

4. (10 marks) Suppose that $A_{1} A_{2} \cdots A_{n}$ is a regular polygon with n sides $(n>2)$, inscribed in a circle of radius r. Find the product of the distances of A_{1} from all the other vertices. That is, find $A_{1} A_{2} \times A_{1} A_{3} \times \ldots \times A_{1} A_{n}$.
5. (10 marks) A sequence $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right), \ldots$ of points in the coordinate plane satisfies

$$
\left(a_{n+1}, b_{n+1}\right)=\left(\sqrt{3} a_{n}-b_{n}, \sqrt{3} b_{n}+a_{n}\right) \text { for each } n=1,2,3, \cdots
$$

Suppose that $\left(a_{100}, b_{100}\right)=(18,20)$. What is $a_{1}+b_{1}$?

Do not cheat to yourself. All the best!

