Solution to Class Test on Complex Numbers

March 2020

1. Suppose that the roots of the equation $x^{4}+a x^{3}+b x^{2}+a x+c=0$ are $\alpha_{1}, \alpha_{2}, \alpha_{3}$, and α_{4}. Show that, $\left(\alpha_{1}^{2}+1\right)\left(\alpha_{2}^{2}+1\right)\left(\alpha_{3}^{2}+1\right)\left(\alpha_{4}^{2}+1\right)=(1-b+c)^{2}$.
Solution. Since $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ are roots of this equation, we must have

$$
\begin{equation*}
p(x)=x^{4}+a x^{3}+b x^{2}+a x+c=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)\left(x-\alpha_{4}\right) . \tag{1}
\end{equation*}
$$

On the other hand, $\prod_{k=1}^{4}\left(\alpha_{k}^{2}+1\right)=\prod_{k=1}^{4}\left|\alpha_{k}+i\right|^{2}=\prod_{k=1}^{4}\left(\alpha_{k}+i\right)\left(\alpha_{k}-i\right)$. Now from equation (1) we have $p(i) p(-i)=\prod_{k=1}^{4}\left(i-\alpha_{k}\right)\left(-i-\alpha_{k}\right)$, which is exactly the right hand side of the last equation. Hence

$$
\prod_{k=1}^{4}\left(\alpha_{k}^{2}+1\right)=p(i) p(-i)=\cdots=(1-b+c)^{2}
$$

2. Let $\triangle A B C$ be an equilateral triangle with the circumradius equal to 1 . Prove that for any point P on the circumcircle, we have $P A^{2}+P B^{2}+P C^{2}=6$.
Solution. Let us set up a complex coordinate system such that the circumcircle of $\triangle A B C$ is the unit circle centred at the origin and the complex coordinate of A is 1 . The coordinates of B and C can be taken as ω and $\omega^{2}=\bar{\omega}$, where $\omega=$ $\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}$. Let z be the coordinate of point P, which satisfies $|z|=1$ (as P lies on the circumcirle). Now,

$$
\begin{aligned}
P A^{2}+P B^{2}+P C^{2} & =|z-1|^{2}+|z-\omega|^{2}+|z-\bar{\omega}|^{2} \\
& =(z-1)(\bar{z}-1)+(z-\omega)(\bar{z}-\bar{\omega})+(z-\bar{\omega})(\bar{z}-\omega) \\
& =3|z|^{2}+3-(z+\bar{z})\left(1+\omega+\omega^{2}\right)=6
\end{aligned}
$$

3. Determine the value of $\cos \frac{\pi}{11}+\cos \frac{3 \pi}{11}+\cos \frac{5 \pi}{11}+\cos \frac{7 \pi}{11}+\cos \frac{9 \pi}{11}$.

Solution. Let $z=\cos \frac{\pi}{11}+i \sin \frac{\pi}{11}$. In light of de Moivre's theorem, observe that the given sum is just the real part of the complex number $z+z^{3}+z^{5}+z^{7}+z^{9}$, which can be simplified to

$$
z\left(1+z^{2}+z^{4}+z^{6}+z^{8}\right)=\frac{z-z^{11}}{1-z^{2}}=\frac{z+1}{1-z^{2}}=\frac{1}{1-z} .
$$

The real part of this complex number equals $\frac{1}{2}\left(\frac{1}{1-z}+\frac{1}{1-\bar{z}}\right)$. Since $|z|=1$ implies $\bar{z}=1 / z$, we get

$$
\frac{1}{2}\left(\frac{1}{1-z}+\frac{1}{1-\bar{z}}\right)=\frac{1}{2}\left(\frac{1}{1-z}+\frac{1}{1-1 / z}\right)=\frac{1}{2}\left(\frac{1}{1-z}+\frac{z}{z-1}\right)=\frac{1}{2}
$$

Therefore the given sum equals $\frac{1}{2}$.
4. Show that for any positive integer n, the following identity holds:

$$
\left(\binom{n}{0}-\binom{n}{2}+\binom{n}{4}-\cdots\right)^{2}+\left(\binom{n}{1}-\binom{n}{3}+\binom{n}{5}-\cdots\right)^{2}=2^{n} .
$$

Solution. The binomial theorem states that

$$
(1+x)^{n}=\binom{n}{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\binom{n}{3} x^{3}+\cdots+\binom{n}{n} x^{n} .
$$

The given quantity suggests that we should put $x=i,-i$ etc. in this equation. Indeed, if we add up such expressions for $(1+i)^{n}$ and $(1-i)^{n}$, the odd powers get cancelled out and we get

$$
\frac{(1+i)^{n}+(1-i)^{n}}{2}=\binom{n}{0}+\binom{n}{2} i^{2}+\binom{n}{4} i^{4}-\cdots=\binom{n}{0}-\binom{n}{2}+\binom{n}{4}-\cdots
$$

In similar fashion, if we subtract the later from the former, we get

$$
\frac{(1+i)^{n}-(1-i)^{n}}{2}=i\left(\binom{n}{1}-\binom{n}{3}+\binom{n}{5}-\cdots\right) .
$$

Setting $x=(1+i)^{n}$ and $y=(1-i)^{n}$, the given quantity can be simplifies as

$$
\begin{aligned}
& \left(\binom{n}{0}-\binom{n}{2}+\binom{n}{4}-\cdots\right)^{2}+\left(\binom{n}{1}-\binom{n}{3}+\binom{n}{5}-\cdots\right)^{2} \\
& =\left(\frac{x+y}{2}\right)^{2}+\left(\frac{x-y}{2 i}\right)^{2}=\left(\frac{x+y}{2}\right)^{2}-\left(\frac{x-y}{2}\right)^{2}=x y
\end{aligned}
$$

Finally, $x y=(1+i)^{n}(1-i)^{n}=\left(1^{2}-i^{2}\right)^{n}=2^{n}$.
5. An ant is moving on the coordinate plane. Initially it was at $(6,0)$. Each move of the ant consists of a counter-clockwise rotation of 60° about the origin followed
by a translation of 7 units in the positive x-direction. If the position of the ant after 2020 moves is (p, q), find the value of $p^{2}+q^{2}$.
Solution. Let the position of the ant after n-moves be represented by a complex number z_{n}. Recall that multiplying a number by $\cos \theta+i \sin \theta$ rotates the object in the complex plane by an angle θ counter-clockwise. In this case, we use $w=$ $\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}$. Applying the rotation and shifting the coordinates by 7 in the positive x direction results to $z_{n+1}=w z_{n}+7$ for each $n \geq 0$. Starting with $z_{0}=6$, we have $z_{1}=6 w+7, z_{2}=w(6 w+7)+7=6 w^{2}+7 w+7$, and so on. Continuing in this manner, we get

$$
z_{2020}=6 w^{2020}+7 w^{2019}+7 w^{2018}+\ldots+7
$$

From de Moivre's theorem, $w^{3}=-1$. Hence $w^{2019}=\left(w^{3}\right)^{\text {odd }}=-1 \Rightarrow w^{2020}=-w$. Now the above sum can be simplified in different ways:

Way 1

$$
\begin{aligned}
& 6 w^{2020}+7 w^{2019}+7 w^{2018}+\ldots+7=-w^{2020}+7 \frac{\left(1-w^{2021}\right)}{1-w}=w+7 \frac{1+w^{2}}{1-w} \\
& =w+7 \frac{1-1 / w}{1-w}\left(\text { since } w^{3}=-1\right)=w-7 / w=w-7 \bar{w}
\end{aligned}
$$

Way 2

$$
\begin{aligned}
& 6 w^{2020}+7 w^{2019}+7 w^{2018}+\ldots+7 \\
& =-w^{2020}+7\left(1+w+w^{2}+\cdots+w^{5}\right)\left(w^{2015}+w^{2009}+\cdots\right)+\cdots \text { (keep adjusting) } \\
& =-w^{2020}+7\left(1+w+w^{2}+\cdots+w^{5}\right)\left(w^{2015}+w^{2009}+\cdots+w^{5}+w^{-1}\right)-7 w^{-1} \\
& =-(-w)-7 / w \quad\left(\text { since }\left(1+w+w^{2}+\cdots+w^{5}\right)=\left(1-w^{6}\right) /(1-w)=0\right) \\
& =w-7 \bar{w} \quad \text { (as } \bar{w}=1 / w) .
\end{aligned}
$$

To obtain the final answer, note that $p^{2}+q^{2}=|w-7 \bar{w}|^{2}=|-3+4 \sqrt{3} i|^{2}=57$.

