Ramanujan School of Mathematics

Class Test on Complex Numbers

March 2020
Total marks: $10 \times 5=50$
Time: 2 hours.

Attempt all the questions. Answers without proper explanations will fetch zero. Show all your rough work - partial solutions may be rewarded. You can use any theorem/result without proving it again; but you have to state it properly.

1. Suppose that the roots of the equation $x^{4}+a x^{3}+b x^{2}+a x+c=0$ are $\alpha_{1}, \alpha_{2}, \alpha_{3}$, and α_{4}. Show that, $\left(\alpha_{1}^{2}+1\right)\left(\alpha_{2}^{2}+1\right)\left(\alpha_{3}^{2}+1\right)\left(\alpha_{4}^{2}+1\right)=(1-b+c)^{2}$.
2. Let $\triangle A B C$ be an equilateral triangle with the circumradius equal to 1 . Prove that for any point P on the circumcircle, we have $P A^{2}+P B^{2}+P C^{2}=6$.
3. Determine the value of $\cos \frac{\pi}{11}+\cos \frac{3 \pi}{11}+\cos \frac{5 \pi}{11}+\cos \frac{7 \pi}{11}+\cos \frac{9 \pi}{11}$.
4. Show that for any positive integer n, the following identity holds:

$$
\left(\binom{n}{0}-\binom{n}{2}+\binom{n}{4}-\cdots\right)^{2}+\left(\binom{n}{1}-\binom{n}{3}+\binom{n}{5}-\cdots\right)^{2}=2^{n} .
$$

5. An ant is moving on the coordinate plane. Initially it was at $(6,0)$. Each move of the ant consists of a counter-clockwise rotation of 60° about the origin followed by a translation of 7 units in the positive x-direction. If the position of the ant after 2020 moves is (p, q), find the value of $p^{2}+q^{2}$.
