Ramanujan School of Mathematics

Class Test on Complex Numbers

Time allotted: 2 hours
Total points: 40

Attempt all the questions. You can use any result discussed in the class, but you have to state it properly. Since it is a 'take-home' exam, I can only request you to take the test honestly and abide by the time limit. Do not cheat to yourself. All the best!

1. Suppose that A, B, C are any three angles satisfying

$$
\begin{gathered}
\cos 2 A+\cos 2 B+\cos 2 C=\cos (A+B)+\cos (B+C)+\cos (A+C) \\
\sin 2 A+\sin 2 B+\sin 2 C=\sin (A+B)+\sin (B+C)+\sin (A+C)
\end{gathered}
$$

Show that $\cos A+\cos B+\cos C=\sin A+\sin B+\sin C$.
2. Let $A B C D$ be a square with centre O and let M, N be the midpoints of $B O$ and $C D$ respectively. Prove that $\triangle A M N$ is an isosceles right triangle.
3. Let n be any positive integer. Define

$$
\begin{aligned}
& A=\binom{n}{0}-\binom{n}{3}+\binom{n}{6}-\cdots \\
& B=-\binom{n}{1}+\binom{n}{4}-\binom{n}{7}+\cdots \\
& C=\binom{n}{2}-\binom{n}{5}+\binom{n}{8}-\cdots
\end{aligned}
$$

Show that
(i) $A^{2}+B^{2}+C^{2}-A B-B C-C A=3^{n}$, (ii) $A^{2}+A B+B^{2}=3^{n-1}$.
4. Let a, n be integers and let p be a prime such that $p>|a|+1$. Prove that the polynomial $f(x)=x^{n}+a x+p$ cannot be factorized as the product of two non-constant polynomials with integer coefficients.
(Hint: First show that each root of $x^{n}+a x+p=0$ must have modulus greater than 1.)

