Ramanujan School of Mathematics

Class Test on Complex Numbers
July 3, 2021
Time allotted: 1 hour
Total marks: $10 \times 2=20$
Attempt any TWO questions.
Show all your rough work - partial solutions may be rewarded. You may use any theorem/result without proving it again; but you have to state it properly.

1. Given a triangle $A B C$, construct two squares $A B M N$ and $A C P Q$ outwardly (such that the squares do not have any overlap with $\triangle A B C)$. Let $A D \perp B C$ with D on $B C$, and E be the midpoint of $N Q$. Show that the points D, A, E are collinear.
2. Determine, with proof, the value of

$$
\cos \frac{\pi}{7}-\cos \frac{2 \pi}{7}+\cos \frac{3 \pi}{7}
$$

3. Suppose that $P(x), Q(x), R(x), S(x)$ are polynomials such that

$$
P\left(x^{5}\right)+x Q\left(x^{5}\right)+x^{2} R\left(x^{5}\right)=\left(x^{4}+x^{3}+x^{2}+x+1\right) S(x)
$$

holds for every $x \in \mathbb{C}$. Prove that $x-1$ is a factor of $S(x)$.
4. Let n be any positive integer. Define

$$
\begin{aligned}
A & =\binom{n}{0}-\binom{n}{3}+\binom{n}{6}-\cdots, \quad B=-\binom{n}{1}+\binom{n}{4}-\binom{n}{7}+\cdots \\
C & =\binom{n}{2}-\binom{n}{5}+\binom{n}{8}-\cdots
\end{aligned}
$$

Show that, (i) $A^{2}+B^{2}+C^{2}-A B-B C-C A=3^{n}$, (ii) $A^{2}+A B+B^{2}=3^{n-1}$.

Take the test honestly, do not cheat to yourself. All the best!

[^0]
[^0]: Submit your scanned answers to aditya.online.teaching@gmail.com.

