26/06/21

(same orientation)
$\triangle A B C$ and $\triangle D E F$ are similar to each other if any of the following holds:
(1) $\angle A B C=\angle D E F, \angle B C A=\angle E F D$
(2) $\frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}$
(3) $\angle A B C=\angle D E F, \quad \frac{A B}{B C}=\frac{D E}{E F}$.

$\angle A B C \neq \angle D E F$

$$
\angle A B C=\angle F E D
$$

Here $\triangle A B C$ and $\triangle D E F$ have opposite orientation.

Now let us move to complex nos. For any point $X$ denote $b_{y}$ the lower case $x$ its complex coordinate.

(*) is equivalent to the fallowing: $\frac{a-b}{b-c}=\frac{d-e}{e-f}$.
Cord ${ }^{n}$ for
Similarity


Apple: Equilateral triangles

$\triangle A B C$ is equilateral iff

$$
\triangle A B C \sim \triangle B C A
$$

II


$$
\frac{a-b}{b-c}=\frac{b-c}{c-a}
$$

$\mathbb{I}$

$$
a^{2}+b^{2}+c^{2}=a b+b c+c a
$$

Fact The triangle with vertices $a, l, c \in \mathbb{C}$ is equilateral iff any of the following holds:

1. $|a-b|=|b-c|=|c-a|$
2. $\frac{b-a}{c-a}=\frac{c-b}{a-b}$

2'. $\operatorname{det}\left(\begin{array}{lll}1 & a & l \\ 1 & b & c \\ 1 & c & a\end{array}\right)=0$
3. $a^{2}+b^{2}+c^{2}=a b+b c+c a$
4. $a \bar{b}=b \bar{c}=c \bar{a}$
5. $a^{2}=b c, b^{2}=c a, c^{2}=a b$

$$
\omega=\frac{-1 \pm i \sqrt{3}}{2}
$$

6., $\left(a+b \omega+c \omega^{2}\right)\left(a+b \omega^{2}+c \omega\right)=0$.
when $b, c, a$ \& $l \omega, \omega^{2}$ have same orientation $<=0$ when opposite orientation

$$
\begin{aligned}
& \quad \frac{b-c}{c-a}=\frac{1-\omega}{\omega-\omega^{2}}=\frac{1}{\omega} \Rightarrow c-a=b \omega-c \omega \\
& \frac{\triangle B C A}{\sim \triangle P Q R} \int_{R\left(\omega^{2}\right)}^{(\omega)} \sim \sim_{b(1)}^{a} \sim
\end{aligned}
$$

Correction: (4) $\Leftrightarrow>(5)=>(3)<=>$ (1), but (1) need not imply (4) or (5). In words, (4) and (5) are equivalent to each other, but they only imply that the triangle is equilateral, not the other way around.

$\triangle B C A \sim \triangle P R Q$

$$
\frac{b-c}{c-a}=\frac{1-\omega^{2}}{\omega^{2}-\omega}=-\frac{1+\omega}{\omega}
$$

$$
\begin{array}{ll}
\omega^{2}(b-c)=c-a \\
\Leftrightarrow a+b \omega^{2}+c w=0 . & =-\frac{\left(-\omega^{2}\right)}{\omega} \\
\Leftrightarrow a
\end{array}
$$

* 

$$
\begin{aligned}
& \left(a+b \omega+c \omega^{2}\right)\left(a+b \omega^{2}+c \omega\right) \\
& \quad=a^{2}+b^{2}+c^{2}-a b-b c-c a
\end{aligned}
$$

This proves (3) $\Leftrightarrow$ (6.)
Q. $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ are the roots of the poly. edna

$$
x^{4}+a x^{3}+b x^{2}+a x+c=0
$$

Show that

$$
\begin{aligned}
& \frac{\left(\alpha_{1}^{2}+1\right)\left(\alpha_{2}^{2}+1\right)\left(\alpha_{3}^{2}+1\right)\left(\alpha_{4}^{2}+1\right)}{\prod_{j=1}^{4}\left(\alpha_{j}^{2}+1\right) \quad(\text { just a notation) }}=(1-l+c)^{2} \\
& x^{2}+1=(x+i)(x-i)
\end{aligned}
$$

So,

$$
\begin{aligned}
\prod_{j=1}^{4}\left(\alpha_{j}^{2}+1\right) & =\prod_{j=1}^{4}\left(\alpha_{j}+i\right)\left(\alpha_{j}-i\right) \\
& =\underbrace{\prod_{j=1}^{4}\left(\alpha_{j}-i\right)}_{A(s a y)} \underbrace{\prod_{j=1}^{4}\left(\alpha_{j}+i\right)}_{B(\text { say })}
\end{aligned}
$$

zeros
Since $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ are the sots of the poly.

$$
P(x)=x^{4}+a x^{3}+b x^{2}+a x+c
$$

we know that

$$
\begin{aligned}
P(x) & =\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)\left(x-\alpha_{4}\right) \\
& =\left(\alpha_{1}-x\right)\left(\alpha_{2}-x\right)\left(\alpha_{3}-x\right)\left(\alpha_{4}-x\right) .
\end{aligned}
$$

Hence, $A=P(i), B=P(-i)$.

$$
P(i)=i^{4}+\theta i^{3}+b i^{2}+\beta i^{2}+c=1-b+c \text {. }
$$

Similarly, $P(-i)=1-b+c$. So the desired quantity equals $(1-l+c)^{2}$.
Q. Suppose that $A, B, C$ are angles satisfying

$$
\begin{equation*}
\cos 2 A+\cos 2 B+\cos 2 C=\cos (A+B)+\cos (B+C)+\cos (C+A) \tag{1}
\end{equation*}
$$

and,

$$
\sin 2 A+\sin 2 B+\sin 2 C=\sin (A+B)+\sin (B+C)+\sin (C+A)
$$

Show that, $\cos A+\cos B+\cos C=\sin A+\sin B+\sin C$.

Let $a=\cos A+i \sin A, \quad b=\cos B+i \sin B$,

$$
C=\cos C+i \sin C .
$$

En (1) $+i \times$ Edn (II) gives the following

$$
\begin{aligned}
\sum_{\text {cyc }}(\cos 2 A+ & i \sin 2 A) \\
& =\sum_{c y c}(\cos (A+B)+i \sin (A+B))
\end{aligned}
$$

Which is same as saying

$$
a^{2}+b^{2}+c^{2}=a b+b c+c a \text {. }
$$

This tells us that $a, b, c$ are vertices of an equilateral triangle. Moreover, $|a|=|b|=|c|=1$.

$\therefore$ The circumcircle of $\triangle A B C$ is the unit circle centred at the origin.

Since $\triangle A B C$ is equilateral, its centroid is same as its cincumcentre, which is the origin.

$$
\text { So, } \begin{aligned}
& \frac{a+b+c}{3}=0 \\
& \Rightarrow \\
& \Rightarrow(\cos A+\cos B+\cos C)+i(\sin A+\sin B+\sin C)=0 \\
& \Rightarrow \cos A+\cos B+\cos C=\sin A+\sin B+\sin C=0
\end{aligned}
$$

Hence proved.
varying
Q. $P$ be a point inside $\triangle A B C$. Let $D, E, F$ le the feet of the altitudes from $P$ onto the sides $B C, C A, A B$, respectively.

For which $P$ is the following sum minimized?

$$
S=\frac{B C}{P D}+\frac{C A}{P E}+\frac{A B}{P F}
$$



$$
\begin{aligned}
\frac{1}{2} P D \cdot B C & +\frac{1}{2} P E \cdot C A+\frac{1}{2} P F \cdot A B \\
= & \text { Area }(A B C) \\
= & \Delta(\text { say })
\end{aligned}
$$

$$
\left(\frac{B C}{P D}+\frac{C A}{P E}+\frac{A B}{P F}\right)(\underbrace{P D \cdot B C+P E \cdot C A+P F \cdot A B}_{=2 \Delta})
$$

$$
\geqslant(B C+C A+A B)^{2} \quad \text { by Cauchy-Schwarz }
$$ inequality)

$$
\left(a^{2}+l^{2}+c^{2}\right)\left(x^{2}+y^{2}+z^{2}\right) \geq(a x+b y+c z)^{2}
$$

with equality iff $\frac{a}{x}=\frac{b}{y}=\frac{c}{z}$.
So, equality holds in (*) iff $\frac{1}{P D}=\frac{1}{P E}=\frac{1}{P F}$
$P$ is equidistant from the 3 sides $\Leftrightarrow P$ is the incentre of $\triangle A B C$
Thus, (*) gives

$$
S=\frac{B C}{P D}+\frac{C A}{P E}+\frac{A B}{P F} \geqslant \frac{(2 s)^{2}}{2 \Delta} \rightarrow \begin{aligned}
& \text { fixed quantity } \\
& \text { (incept. of } P \text { ) }
\end{aligned}
$$

and $S$ attains this min value of $P=\begin{array}{r}\text { Incentre } \\ \text { of } \triangle A B C .\end{array}$ (Ans)

